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Abstract. An algebraic proof of the gluing theorem at the tree level of perturbation theory in
string field theory is given. Some applications of the theorem to closed string non-polynomial
action are briefly discussed.

The gluing of vertices in string field theory, and in particular in the case of closed strings, is
at the basis of the construction of a perturbative approach to the theory. The proof of various
properties such as associativity and gauge invariance of the action makes use of such gluing
of vertices. To tackle the problem, Le Clair et al [1] have developed and proved a theorem
which shows how to construct a given vertex starting from an elementary one. In principle, one
could start from the simplest vertex with three strings and generate vertices for any number of
strings. With some precision about the integration over modular space it will give the starting
point to build a field theory for closed strings with only one term, namely, the three-string
vertex, which appropriately will generate the infinite non-polynomial action [2].

In the proof of the theorem in [1], the authors use the Riemann surfaces with holes
representation of vertices to show that the contraction of legs in different vertices (which can
be represented by the BPZ inner product [3]) gives another vertex representation the Riemann
surface arising from sewing two surfaces around the hole boundaries.

Moreover, it has been suggested in [4, 5] that the scattering amplitude of N strings, at
any order in perturbation theory, can be interpreted as the gluing of elementary vertices. In
this approach to the field theory proposed by Witten [6], the propagator between vertices is
simulated by the joining of intermediate strings in all possible parametrizations. This requires
the formulation of the theory in terms of the left- and right-hand pieces of the string.

Following this suggestion we prove the gluing theorem using the operator approach (to
string vertices) developed in [7], in which strings are expanded using left and right degrees
of freedom and the Neumann functions are written in terms of infinite-dimensional matrices.
These matrices are just the ones appearing in the canonical transformation from the usual
self-energy Fock space operators to the ones splitting left and right degrees of freedom as
mentioned above.

Using general properties of these matrices, the proof of the theorem simplifies. One
can then explicitly generate the Neumann function of the N -string vertex starting from the
three-string vertex appearing in the open string field action. In closed strings, in order
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to obtain the non-polynomial expansion, one needs to know how to contract the restricted
vertex interaction [2]. Following [4], where the closed string interaction is interpreted as the
reparametrization of the string, it appears to be possible [8] to perform a generalization of the
gluing of vertices (which gives just a point in the modular space) to the gluing of parametrized
vertices covering a region of the modular space.

The organization of this paper is as follows. First we review the form of the vertex when the
midpoint string interaction is explicitly considered. Then we briefly state the gluing theorem
of [1]. The proof of the theorem for arbitrary vertices is sketched, and the relevant steps, in
the case of the gluing of two vertices with three strings to give one with four (3 + 3 → 4), are
discussed in some detail. We will see that in the critical dimension the ghost degrees of freedom
cancel the determinant of the Laplacian arising from the gluing procedure, represented here as
the determinant of an infinite-dimensional matrix. Finally we state our conclusions and future
outlook.

When string fields are written in terms of half-string oscillator modes, the N -string vertex
takes on a very elegant and simple form. In the spirit of the original work of [6] in string field
theory, the interaction vertex is obtained by identifying oscillators referring to opposite halves
of two adjacent strings. It has been shown in [9] that the Fourier components of the Neumann
functions for the N -string vertex can be written in terms of particular linear combinations
of the two infinite-dimensional matrices relating the half-string degrees of freedom to the
conventional Hamiltonian eigenstate oscillator modes. For the purpose of this work, this
particular algebraic representation of the Neumann functions is very useful: the reason is that
in order to prove the theorem one needs to calculate explicitly the inverse of some combinations
of these matrices which have been calculated before [9] in its most general form.

Writing the N -string vertex in an operator form, and splitting the vertex into coordinate
and ghost sector, we obtain for the coordinates degrees of freedom

〈Vx(1, . . . , N)| =
N∏

i=1

δ

( N∑
i=1

ki

)
i〈ki |Vx(1, . . . , N). (1)

The N momentum states i〈ki | are eigenstates of the corresponding i-string momentum
operator a

(i)
0 and the vertex operator, written in terms of string creation and annihilation

oscillator modes, is given by

Vx(1, . . . , N) = exp

{
1
2

∑
r,s

∑
n,m

a(r)
µ,nN

rs
n,maµ(s)

m

}
. (2)

In D space–time dimensions µ = 1, . . . , D and r, s = 1, . . . , N . Nrs
n,m are the Fourier

components of the relevant Neumann function.
For the ghost degrees of freedom we use the bosonic formalism. Hence, one has for the

ghost vertex a similar form to the matter vertex:

〈Vφ(1, . . . , N)| = δ

( ∑
i=0

qi + Q

) N∏
i=1

i〈−qi − Q|Vφ(1, . . . , N). (3)

Q is the weight of the curvature term in the string action [10] and the states i〈−qi −Q| are ghost
number eigenstates. In terms of the oscillator modes (φ(r)

n ) for the bosonic reparametrization
ghosts one has

〈−q − Q|φ0 = 〈−q − Q|q.

The vertex operator now takes the form

Vφ(1, . . . , N) = exp

{
1
2

∑
r �=s

φ
(r)
0 Ñ

r,s
0,0φ

(s)
0 +

∑
r,s

∑
n

φ
(r)
0 Ñ

r,s
0,nφ

(s)
n + 1

2

∑
r,s

∑
n,m

φ
(r)
0 Ñ r,s

n,mφ(s)
m

}
.

(4)
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Notice that the ghost vertex differs from (2) in the ghost number quadratic term as well as
by having an extra linear term. Coordinate and ghost coefficients are related according to

Ñ
r,s
0,0 = N

r,s
0,0 − 1

2N
r,r
0,0 − 1

2N
s,s
0,0

Ñ
r,s
0,n = N

r,s
0,n − 1

2Ks
n

Ñr,s
n,m = Nr,s

n,m

(5)

where the linear coefficient represented by the vector �Ks has as components

Ks
n = −4

3

(−1)
n
2

(2n)
1
2

(1 + (−1)n). (6)

The discussion of both matter and ghost sectors can be carried out in parallel. The
additional terms appearing in the ghost part will contribute in the critical dimension to the
cancellation of the Laplacian determinant arising from the ghost and coordinate gluing. This
point will be discussed later. The complete vertex is given by the product of both pieces, the
one corresponding to the matter sector and that corresponding to the ghost, namely

V (1, . . . , N) = Vx(1, . . . , N)Vφ(1, . . . , N).

The general form of the Neumann coefficients Nr,s
n,m have been calculated in many

works [11]: for our purpose the representation given in [9] is convenient since, for any vertex,
they can be written in a compact form in a N -dimensional space spanned by the N strings, as
elements of an N × N matrix. For instance, one has for the terms which do not involve the
zero modes

Nr,s
even even = (INMT

1 − S+M
T
2 )−1(INMT

2 − S+M
T
−)

N
r,s
odd odd = S+ − ST

−(INM1 − S+M2)
−1M2S−

N
r,s
odd even = ST

−(INM1 − S+M2)
−1.

The remaining ones are of similar form and do not add anything new to these expressions. IN

is the identity N -dimensional matrix, whereas the matrices S+ and S− are

(S+)ij = 1
2 (1 + δij )

(S−)ij = (−1)i+1

2
(1 − δij ).

The infinite-dimensional matrices M1,2 give the canonical transformation from the half-
string degrees of freedom to the conventional ones. Explicitly they have the form [4]

(M1)n,m = 2

π

(
2n

2m − 1

)1/2
(−)n+m

2n − (2m − 1)

(M2)n,m = 2

π

(
2n

2m − 1

)1/2
(−)n+m

2n + 2m − 1
.

(7)

One can see that, after diagonalization of the S± matrices, the problem of computing the
vertex itself essentially reduces to calculating the inverse of the matrix (M1 − cos 2kπ

N
M2),

where k = 1, . . . , N . Details of the whole process as well as the general form of this matrix
and its inverse have been given in [9].

Now, one can use this result in the proof of the gluing theorem [1]. The theorem states
that the contraction of two string vertices (e.g., for N and N ′ strings), through the BPZ inner
product (which is nothing other than the vertex overlapping two strings, 〈V (12)|), gives the
(N +N ′ −2)-string vertex. More precisely, using the notation of vertices given in equations (1)
and (3), including ghost and matter sectors in the same ‘bra’, the result can be cast as follows:

〈V (1, . . . , N − 1, a)|〈V (N, . . . , N + N ′ − 2, a′)|V (a, a′)〉 = 〈V (1, . . . , N + N ′ − 2)|.
(8)
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This means that we have contracted the two vertices by joining the strings a and a′ in
the first and the second vertex respectively. Of course, because of the cyclic properties of the
vertices, the position of these strings is immaterial.

In terms of the Neumann representation of the vertex given in equations (2) and (4), the
theorem shows the identification of the coefficients appearing in V (1, . . . , N + N ′ − 2) with
particular combinations of the ones appearing in V (1, . . . , N −1, a) and V (1, . . . , N ′ −1, a′).
In particular, in the proof of the theorem, and in the coordinate sector, one has to show the
identifications

N s1,s2 = Ns1,s2 + Ns1,aENa′,a′
E(1 − Na,aENa′,a′

E)−1Na,s2

N s ′
1,s

′
2 = Ns ′

1,s
′
2 + Ns ′

1,a
′
ENa,aE(1 − Na′,a′

ENa,aE)−1Na′,s ′
2

N si ,s
′
j = Nsi,a − E(1 − Na′,a′

ENa,aE)−1Na′,s ′
j

(9)

where the indices si (s ′
i ) run from 1 to N − 1 (N to N ′ + N − 2). The bold-faced N

represent the coefficients of the resulting glued vertex according to the index. The matrix
En,m = (−)(n+1)δn,m(n, m � 1) originates from the BPZ inner product that, in the language of
vertices, is V (a, a′). Also, after the contraction of the vertices with the BPZ inner product [3],
the determinant of the Laplacian appears. This amounts to a factor of the form

Dx = [det(1 − Na′a′
ENa,aE)]−D/2 (10)

D being the space–time dimension; this factor will cancel once the contribution from the ghost
sector is included.

Hence, the proof of the theorem relies on the calculation of the inverse matrix (1 −
Na,aENa,′a′

E)−1. Due to the symmetries of the diagonal Neumann coefficients there is no
dependence on the indices a and a′. The general form of this inverse matrix can be obtained
in full; the algebra involved is rather tedious, and the result can be cast in terms of the matrix
M−1

1 M2 = φ. For instance, for an equal and even number of strings in each vertex, i.e. N = N ′

even, one can show that

(1 − Na,aENa′,a′
E)−1 = 2

√
1 − φ2

(
1 +

√
1 − φ2

) (
1 +

√
1 + φ2

)2N−2
− φ2N−2

((
1 +

√
1 − φ2

)N

− φN

)2 . (11)

This formula is not at all illuminating, to illustrate the essential points in the proof, we
will work out in detail the particular case of the gluing of two three-string vertices to give a
four-string vertex. This vertex also appears explicitly in the string field theory action [6] for
open strings and, as commented in the introduction, there is a possibility of generating the
non-polynomial string field theory action using only this vertex.

More precisely we are interested in the relation

〈V (1, 2, a)|〈V (a′, 3, 4)|V (a, a′)〉 = 〈V (1, 2, 3, 4)|
which, in the momentum basis, and restricting ourselves to the coordinate degrees of freedom,
is written as∫ 4∏

i=1

dki dka dka′δ(ka − k1 − k2)δ(ka′ − k3 − k4)δ(ka − ka′)

×〈k1|〈k2|〈ka|Vx(1, 2, a)〈ka′ |〈k3|〈k4|Vx(a
′, 3, 4)Vx(a, a′)|ka′ 〉|ka′ 〉

=
∫ 4∏

i=1

dkiδ

( 4∑
i=1

ki

)
〈k1|〈k2|〈k3|〈k4|Vx(1, 2, 3, 4).
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We focus our attention on the nonzero modes. In the coordinate sector, when zero indices
are involved, no difficulties arise and the proof can be carried out along the same lines; the
additional linear term appearing in the ghost vertex will be considered below. For the N = 3
vertex, one has for the nonzero modes

Nr,r
even,even = 1

2 (MT
1 + 1

2MT
2 )−1MT

2

Nr,r±1
even,even = Nr,r±2

even,even = − 1
2 (MT

1 + 1
2MT

2 )−1(MT
1 + MT

2 )

N
r,r
odd,odd = 1

2 (M1 + 1
2M2)

−1M2

N
r,r±1
odd,odd = N

r,r±2
odd,odd = − 1

2 (M1 + 1
2M2)

−1(M1 + M2)

N
r,r
even,odd = N

r,r
odd,even = 0

N
r,r±1
even,odd = N

r,r±1
odd,even = −N

r,r±2
even,odd = N

r,r±2
odd,even = (MT

1 + 1
2MT

2 )−1.

(12)

In this case all the information is encoded in the inverse matrix given in (9), namely

M−1 = (1 − Na′a′
ENa,aE)−1

(notice that this matrix is effectively independent of the indices because of the symmetries of
the Neumann coefficients).

To invert this matrix one needs only to make use of the properties of the matrices
M1,2 dictated by the fact that they define a canonical transformation in the string degrees
of freedom [4]. In particular, they preserve the commutation relations of the string creation
and annihilation operators; hence, one has

M1M
T
1 − M2M

T
2 = I

M1M
T
2 − M2M

T
1 = 0.

A short calculation gives the inverse matrix

(M−1)even,even = (M1 + 1
2M2)(1 − M−1

1 M2)(M
T
1 + 1

2MT
2 )

(M−1)even,odd = (M−1)odd,even = 0
(M−1)odd,odd = (MT

1 + 1
2MT

2 )(1 − M2M
−1
1 )(M1 + 1

2M2).

(13)

The final step is now to substitute this result in equation (7) and complete the form of the
four-vertex. In particular, one obtains

N r,r = 1
2

(
M2M

−1
1 0

0 −M−1
1 M2

)
N r,r+1 = 1

2

( −1 (M−1
1 )T

−M−1
1 1

)

N r,r+2 = 1
2

(
M2M

−1
1 0

0 −M−1
1 M2

)
N r,r+1 = 1

2

( −1 (M−1
1 )T

−M−1
1 1

)

to be compared with the result given in [9] for the general vertex (we have arranged rows and
columns according to the parity of the indices as in equation (12)).

Other terms relating the remaining Neumann functions involve the same sort of algebra
and we will not insist on producing the calculation here. It is important to remember that, in
the process of contracting the oscillator modes, the determinant term given in equation (10)
appears, which will have to be combined with terms arising from the ghost sector.

Contraction of the oscillator modes in the ghost sector is performed using the same
techniques. In this case, however, because of the linear factor Ks

n, there are additional
contributions proportional to the combinations of the zero modes or, equivalently, to the total
central charge Q.

In fact, apart from the vertex operator of the glued vertex, one obtains the above-mentioned
term which, combined with the determinant of the Laplacian from the coordinate sector (10),
amounts to a factor

DxDφe
3
2 Q2k. (14)
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k is given by a combination of the matrices (7) and the vector (6), whose explicit form is not
needed for our purpose, and the determinant of the Laplacian; the additional part arising from
the contraction of the ghost operators using the BPZ inner product now appears to the power
−1/2

Dφ = [det(1 − Na′a′
ENa,aE)]−1/2. (15)

To prove that this factor (14) is equal to one, we proceed in the following way: first
consider the state generated by the moments of the energy–momentum operator acting on the
momentum and ghost number eigenstate

〈a| = 〈k, −q − Q| exp 1
2 {anN

x
n,mam + φnÑ

φ
n,mφm}

(with an obvious notation for the Neumann coefficients). Due to the fact that the central charge
of this operator is zero in D = 26 space–time dimensions and Q = −3, we have, on the sphere,
the vanishing of all its moments. In the language of vertices this means

〈a|〈a′|V (a, a′)|ka〉|ka′ 〉 = 1.

Now, calculating explicitly the left-hand side of the former relation, one arrives at the
identity

1 = DxDφe
3
2 Q2k

where k is the same contribution as the one appearing in (14): this derives from the fact that
the vector �Kr is independent of the string under consideration, namely the value of r , thus
the Q and D dependence are the same in both equations. The extra coefficient in front of the
glued vertex is equal to one, thus proving the validity of the theorem.

This result completes the proof of the theorem. Other vertices can be glued following
these lines; however, the calculational details are more involved. This is easily seen in the
form of equation (11).

Now, we want to argue that the gluing theorem can be applied to calculate actual string
amplitudes. It has been shown in [4] that string amplitudes themselves can be represented as
the sum of contact string interactions in all possible reparametrizations of the strings. Also
in [5] it was shown that the terms of the non-polynomial closed string action can be obtained
as a sum of string contact interactions, in a region of the reparametrization modular space
appropriate to reproduce the so-called restricted polyhedra. With these two ideas in mind,
on can imagine the gluing of vertices in order to reproduce string amplitudes. For instance,
starting with the three-strings vertex and applying the reparametrization operator (�) defined
in [4] to each vertex, one could envisage the construction of string amplitudes starting from a
generalization of the three-string vertex. More precisely one has

〈V (1, 2, a)|
( ∏

i=1,2,a

�i

)
〈V (a′, 3, 4)|

( ∏
i=a′,3,4

�i

)
|V (a, a′)〉 = 〈V (1, 2, 3, 4)|

( ∏
i=1,...,4

�i

)

where we have, with the BPZ inner product, glued two vertices taking all possible
reparametrizations of the strings to give a four-string vertex, which, in [4], was shown to
reproduce the tree level string amplitudes for both closed and open strings.

Work in this direction is in progress and we hope to report on it in the near future. This
result will open the way to simplifying the construction of amplitudes in the case of closed
strings where the non-polynomial theory of [2] requires the addition of terms in every order
of perturbation theory.

To summarize, in this paper we have given an algebraic proof of the gluing theorem of string
vertices applied to the string field theory due to Witten [6]. We have used the representation
of Neumann functions given by the half-string formulation of the theory and the problem is
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reduced to the calculation of inverse matrices (of infinite dimension). The introduction of the
reparametrization ghosts allows us to get rid of the determinant of the Laplacian arising from
the operator contraction in the process of gluing. Finally we foresee the possibility that the
theorem, when applied to a suitable generalization of the string vertices, may generate the open
and closed string amplitudes. This result will greatly simplify the construction of amplitudes
in the context of the non-polynomial string field theory.
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